Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis.

نویسندگان

  • Kari E Fladmark
  • Odd T Brustugun
  • Gunnar Mellgren
  • Camilla Krakstad
  • Roald Boe
  • Olav K Vintermyr
  • Howard Schulman
  • Stein O Doskeland
چکیده

The potent natural toxins microcystin, nodularin, and okadaic acid act rapidly to induce apoptotic cell death. Here we show that the apoptosis correlates with protein phosphorylation events and can be blocked by protein kinase inhibitors directed against the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). The inhibitors used comprised a battery of cell-permeable protein kinase antagonists and CaMKII-directed peptide inhibitors introduced by microinjection or enforced expression. Furthermore, apoptosis could be induced by enforced expression of active forms of CaMKII but not with inactive CaMKII. It is concluded that the apoptogenic toxins, presumably through their known ability to inhibit serine/threonine protein phosphatases, can cause CaMKII-dependent phosphorylation events leading to cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca /Calmodulin-dependent Protein Kinase II Is Required for Microcystin-induced Apoptosis*

The potent natural toxins microcystin, nodularin, and okadaic acid act rapidly to induce apoptotic cell death. Here we show that the apoptosis correlates with protein phosphorylation events and can be blocked by protein kinase inhibitors directed against the multifunctional Ca /calmodulin-dependent protein kinase II (CaMKII). The inhibitors used comprised a battery of cell-permeable protein kin...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Charting calcium-regulated apoptosis pathways using chemical biology: role of calmodulin kinase II

BACKGROUND Intracellular free calcium ([Ca2+]i) is a key element in apoptotic signaling and a number of calcium-dependent apoptosis pathways have been described. We here used a chemical biology strategy to elucidate the relative importance of such different pathways. RESULTS A set of 40 agents ("bioprobes") that induce apoptosis was first identified by screening of a chemical library. Using p...

متن کامل

CaMKII is involved in subcellular Ca2+ redistribution-induced endoplasmic reticulum stress leading to apoptosis in primary cultures of rat proximal tubular cells exposed to lead

Lead (Pb) is a known nephrotoxic element. Recently we have proved that subcellular Ca2+ redistribution is involved in Pb-induced apoptosis in primary cultures of rat proximal tubular (rPT) cells, but the underlying mechanism remains to be elucidated. Firstly, data showed that Pb triggers endoplasmic reticulum (ER) stress response in rPT cells, as evidenced by the elevations of ER stress markers...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 4  شماره 

صفحات  -

تاریخ انتشار 2002